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Abstract

A hybrid derivative-free double step length technique is proposed in this work in order to en-
hance the numerical results and convergence properties of the double direction and step length
scheme. This is accomplished by combining a Picard-Mann hybrid iterative method proposed
byKhan [Fix Point Theory andApplications, pp. 1-10, vol.69 (2013)]with the double step length
approach. A derivative line search is employed in order to compute the two step lengths. Fur-
thermore, a suitable acceleration parameter is developed to approximate the Jacobian matrix.
Under some mild conditions, the proposed method is shown to converge globally. The numer-
ical experiment presented in this paper illustrates the efficiency of the proposed method over
some existing methods.
Keywords: acceleration parameter; double direction and step length; global convergence; hy-

bridization; Jacobian matrix.
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1 Introduction

Many researchers in the fields of sciences, engineering, and other relevant areas try to achieve
results with models in the form of a system of nonlinear equations

F (a) = 0, (1)

where F : Rn → R
n is nonlinear map.

Moreover, (1) can be obtained from an unconstrained optimization problem [9] Let f be a
merit function defined by

f(a) =
1

2
‖F (a)‖2, (2)

Then the problem of nonlinear equations (1) is equivalent to the following problem of global
optimization

min f(a), a ∈ Rn. (3)

The study of suchmappings is used inmany scientific fields, such as economic [18] and chemi-
cal [10] equilibrium systems. It has practical application in Chandrasekhar H-equation that arises
in the theory of radiative heat transfer in nonlinear integral equation [19] as well. Newton [4] and
quasi-Newton [20] methods are among the iterative methods used to solve these problems. Their
pertaining iterative procedure is given by

ak+1 = ak + sk, sk = αkdk, k = 0, 1, ..., (4)

where αk is a step length, ak+1 represents a new iteration, ak is the previous iteration, while dk is
the search direction.

Newton’s method is very welcome because of its nice properties such as rapid convergence
rate from a reasonably good starting and Newton’s search direction dk is given by

dk = −(F ′k)−1Fk, (5)

whereF ′k is the Jacobianmatrix ofFk at ak. However, inNewton’smethod, the Jacobianmatrix and
its inverse are computed at each iteration, which invokes the first-order derivative of the system. It
is well known that the computation of some function derivatives is not always available or cannot
be obtained precisely in practice. In this case, Newton’s method cannot be applied directly. For
this reason, quasi-Newton’s methods were developed to replace the Jacobian matrix or its inverse
with an approximation which can be updated at each iteration [9, 20, 3], and its search direction
is given by

dk = −B−1k Fk,

whereBk is n×nmatrix that approximate the Jacobian of F at xk. In addition, the most outstand-
ing class of quasi-Newton update Bk needs to satisfy the secant equation

Bksk−1 = yk−1,

where, yk−1 = Fk − Fk−1 and sk−1 = ak − ak−1. In addition, the search direction dk is usually
required to satisfy the descent condition

Of(ak)T dk < 0.
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If dk is a descent direction of f at ak, then inequality

f(ak + αkdk) ≤ f(ak), (6)

holds for all αk > 0 sufficiently small.

A suitable step length αk is needed for the methods to converge globally. The step length αk
can also be computed either exact or in exact. The best line search rule is the exact one [21] that
satisfies

f(ak + αkdk) = min
α>0

f(ak + αdk). (7)

By using the iterative procedure (4), the step length requirement is to sufficiently decrease the
function value to achieve global convergence. However, in practical computation, determining
the exact step length is difficult, if not impossible. As a result, inexact line search is the most
commonly used line search in practice. Brown and Saad [2] proposed the following inexact line
search rule to obtain the step length αk

f(ak + αkdk)− f(ak) ≤ σαkOf(ak)T dk, (8)

where σ ∈ (0, 1). It is clear from the technique in (8), that the Jacobian matrix must be computed
at each iteration, which increases the computing difficulty, especially for large-scale problems or
when the matrix is expensive to compute. Consequently, Yuan∗ and Lu [20] present a new back-
tracking inexact technique for obtaining the step length αk as follows:

‖F (ak + αkdk)‖2 ≤ ‖F (ak)‖2 + δα2
kF (ak)T dk, (9)

where δ ∈ (0, 1). Another derivative-free line search is proposed by Li and Fukushima in [9],
which computes the step length αk as follows:
Let ω1 > 0, ω2 > 0 and r ∈ (0, 1) be constants and let {ηk} be a given positive sequence such that

∞∑
k=0

ηk < η <∞, (10)

f(ak + αkdk)− f(ak) ≤ −ω1‖αkF (ak)‖2 − ω2‖αkdk‖2 + ηkf(ak). (11)
Let ik is the smallest non negative integer i such that (11) holds for α = ri. Let αk = rik .

The paper is organized as follows. The literature review is presented in Section 2. Assumptions
and Notations are presented in Section 3. In Section 4, the algorithm of the proposed method
is presented. In Section 5, some numerical results are reported. The discussion is presented in
Section 6, and the conclusion is made in Section 7.

2 Literature Review

Despite the appealing characteristics of theNewton and quasi-Newton’smethods, they require
the Jacobian computation or its approximation at each iteration. Thus, they are not ideal for solv-
ing large-scale problems. Due to this shortcoming, the idea of the double direction approach is
presented by Duranovic-Milicic, in [11], via

ak+1 = ak + αkdk + α2
kbk, (12)
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where, bk and dk are search directions respectively. Nonetheless, Duranović et al. [12] also pro-
posed the algorithm for minimizing non-differentiable function using the double direction ap-
proach. Motivated by the work in [12], Petrović and Stanimirović, [15] proposed a double di-
rection method for unconstrained optimization problems. In their work, an approximate Hessian
matrix is obtained via acceleration parameter γk i.e.

52f(ak) ≈ γkI, (13)

where 52f(xk) is the Hessian matrix and f : Rn → R. The interesting feature of the scheme in
[15] is that the two derivative-free directions were presented in the scheme, where the first direc-
tion approximated the Hessian with diagonal matrix through acceleration parameter. In contrast,
the second one is a derivative-free direction, allowing the method to solve large-scale problems.
However, the study of double direction methods for solving systems of nonlinear equations is
infrequent in the literature. This motivated Halilu and Waziri [7] to use the scheme in [15] and
proposed a derivative-free method via double direction approach for solving a system of non-
linear equations. In their work, the Jacobian matrix is approximated via acceleration parameter
γk > 0, i.e.,

F ′k ≈ γkI, (14)
where I is an identity matrix. However, In [1], Abdullahi et al. modified the idea in [7] in solv-
ing the conjugate gradient approach, the method converged globally using the derivative-free line
search proposed in [9]. The rationale behind the double direction method is that there are two
corrections in the scheme (12); if one correction fails during the iterative process, then the sec-
ond one will correct the system. To improve the performance of the scheme in [15] numerically,
Petrović, presented the accelerated double step size model for unconstrained optimization [13],
and its iterative scheme is given by

ak+1 = ak + αkdk + βkck, (15)

is considered in this work. Here αk and βk denote the step lengths, and dk and ck generate search
directions [13].

The numerical results indicated that the method in [13], performed better than the double di-
rection method [15], because of the contribution of the double step length scheme used in [13].
In [6], Halilu and Waziri also incorporated the idea of in (15), and proposed the transformed
double step length method for solving system of nonlinear equations to enhance the numerical
performance of double direction method in [7]. The numerical results presented in their work
showed that the method in [6] converged faster than [7]. Furthermore, Motivated by the work
in [6], recently, Halilu and Waziri presented an inexact double step length approach in [8]. The
extensive numerical experiments showed that the method performed exceptionally well by com-
paring it with the existing method in the literature. The attractive feature of the technique in [8]
is that it has double step length and single direction.

Petrović et al. [16] improve the convergence properties, and numerical results of the double
direction method in [15] by hybridizing the scheme with Picard-Mann hybrid iterative process
proposed by Khan in [17]. The Picard-Mann hybrid iterative process is defined as three relations:

a1 = a ∈ Rn,
vk = (1− ηk)ak + ηkT (ak),

ak+1 = T (vk), k ∈ N,
(16)

where T : Ω −→ Ω is a mapping defined on nonempty convex subset Ω of a normed space E, ak
and vk are sequences determined by the iteration (16), and {ηk} is the sequence of positive num-
bers in (0, 1). Following that, in [14], the hybridization rule in [17] is applied to the double step
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length scheme in order to improve the convergence properties of the double step length method
in [13].

Based on the literature reviewed above, it can be concluded that using the hybridization pro-
cess is an excellent way to improve the convergence properties and numerical experiments of some
existing methods. Therefore, motivated by the idea presented by Petrović in [14] and the approx-
imation in (14), this paper aims to develop a hybrid double direction and step length method for
solving a system of nonlinear equations via

F ′k ≈ θ−1k γkI,

where, θk and γk are the correction and acceleration parameters, respectively.

The following research questions might be posed by someone.

Why double direction and step length?

The double direction and step length are because most methods for solving nonlinear equations
are single-direction methods. One disadvantage of these methods is that they only have one cor-
rection in their iterative scheme, so if the correction fails, the system will collapse. The rational
behind the double direction and step length approaches are that the scheme contains two correc-
tions. The second will correct the system if one fails during the iterative process.

Table 1: Authors’ contribution table.

Author’s Name Derivative-free Matrix-free Double Direction Double step length Hybridization System of nonlinear equations
Dennis and Schnabel [4] no no no no no no
Li and Fukushima [9] yes no no no no yes
Yuan and Xiwen [20] yes no no no no yes
Waziri et al. [19] yes no no no no yes
Duranovic [11] yes yes yes no no no
Halilu and Waziri [6] yes yes yes no no yes
Duranovic and Filipovic [12] yes yes yes no no no
Halilu and Waziri [7] yes yes yes no no yes
Petrovic and Stanimirovic [15] yes yes yes no no no
petrovic [13] yes yes yes yes no no
petrovic et al. [16] yes yes yes no yes no
petrovic [14] yes yes yes yes yes no
Abdullahi et al. [1] yes yes yes no no yes
Halilu and Waziri [8] yes yes no yes no yes
This article yes yes yes yes yes yes

The followings are some of the contributions of this paper.

• This paper presents a hybrid derivative-free double step length approach that approximated
the Jacobian matrix via the acceleration parameter.

• The new search direction is proposed so that it satisfies the decent condition.
• The correction parameter is derived using the Picard-Mann iterative scheme to improve the

convergence properties and numerical experiments of some existing double direction and
step length methods.

• There are two corrections in the double direction and step length scheme. Therefore, if one
correction fails during the iterative process, the second one will automatically correct the
system.

333



A.S. Halilu et al. Malaysian J. Math. Sci. 16(2): 329–349 (2022) 329 - 349

3 Assumptions and Notations

Let us start by defining the level set
S = {a|‖F (a)‖ ≤ ‖F0‖}. (17)

Assumption 1.

(1) There exists a∗ ∈ Rn such that F (a∗) = 0.
(2) F is continuously differentiable in some neighborhood sayM of a∗ containing S.
(3) The Jacobian of F is bounded and positive definite onM , i.e there exists a positive constants

H > h > 0 such that
‖F ′(a)‖ ≤ H ∀a ∈M, (18)

and

h‖d‖2 ≤ dTF ′(a)d ∀a ∈M,d ∈ Rn. (19)

Remarks:
Assumption 1 implies that there exists a constantsM > m > 0 such that

h‖d‖ ≤ ‖F ′(a)d‖ ≤ H‖d‖ ∀a ∈M,d ∈ Rn. (20)

h‖a− b‖ ≤ ‖F (a)− F (b)‖ ≤ H‖a− b‖ ∀a, b ∈M. (21)
In particular ∀a ∈M we have

h‖a− a∗‖ ≤ ‖F (a)‖ = ‖F (a)− F (a∗)‖ ≤ H‖a− a∗‖, (22)
where a∗ stands for the unique solution of (1) in M . Since θ−1γkI approximates F ′(ak) along
direction sk, another assumption can be contemplated.

Assumption 2.
θ−1γkI is a good approximation to F ′k, i.e.,

‖(F ′k − θ−1γkI)dk‖ ≤ ε‖Fk‖ (23)
where ε ∈ (0, 1) is a small quantity and θ ∈ (1, 2) is a correction parameter.

Notations.

• The space Rn denote the n−dimensional real space.
• ‖ · ‖ is the Euclidean norm.
• Fk = F (ak).
• sk = ak+1 − ak.

• yk = Fk+1 − Fk.

• F ′k = F ′(ak).
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4 Main Result

The computation of two step lengths αk and βk, as well as the derivation of the acceleration
parameter, is presented in this section. Now, let the two directions, ck and dk in (15) to be defined
as:

dk = −γ−1k Fk, (24)

ck = −Fk, (25)
so by putting (24) and (25) in to (15) the following equation is obtained

ak+1 = ak − (αk + βkγk)γ−1k Fk. (26)

Now, from Taylor series expansion of the first order, the approximation of Fk+1 is presented

Fk+1 ≈ Fk + F ′(δ)(ak+1 − ak), (27)

where the parameter δ ∈ [ak, ak+1],

δ = ak + φ(ak+1 − ak) = ak + φ(αk + βkγk)dk 0 ≤ φ ≤ 1. (28)

By taking φ = 1 in (28), δ = ak+1. Therefore,

F ′(δ) ≈ γk+1I. (29)

This approximation implies
yk = γk+1sk, (30)

where, yk = Fk+1−Fk, sk = (αk+βkγk)dk. Bymultiplying both side of (30) by yTk , the acceleration
parameter γk+1 can be computed in the following way:

γk+1 =
yTk yk

(αk + βkγk)yTk dk
. (31)

To present the hybrid type of derivative-free double direction method, the mapping T in (16)
is redefined by T (vk) = vk − (αk + βkγk)γ−1k Fk. By this definition and (16),

a1 = x ∈ Rn,
vk = (1− ηk)ak + ηkT (ak) = ak − ηk(αk + βkγk)γ−1k Fk,

ak+1 = T (vk) = vk − (αk + βkγk)γ−1k Fk, k ∈ N.
(32)
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From the second and third equations in (32) we obtain the second iterative scheme,

ak+1 = ak − θk(αk + βkγk)γ−1k Fk, (33)

where, θk = (ηk + 1) and ηk ∈ (0, 1). Define η = ηk, so that θ = (η + 1) ∈ (1, 2) is a correction
parameter. From (33). Therefore, the proposed search direction is defined as:

dk = −θγ−1k Fk. (34)

Finally, from (33) and (34), the general scheme is given as:

ak+1 = ak + (αk + βkγk)dk. (35)

Algorithm 1: Hybrid Double direction and step length method(HDDSL).
Input: Given x0, γ0 = 1, ε = 10−4, ω1 > 0, ω2 > 0 and q, r ∈ (0, 1), set k = 0.
Step 1: Compute Fk.
Step 2: If ‖Fk‖ ≤ ε then stop, else goto step 3.
Step 3: Compute search direction dk = −θγ−1k Fk.
Step 4: Set ak+1 = ak + (αk + βkγk)dk. Let αk = rmk and βk = qmk , withmk being the
smallest nonnegative integerm such that

f(ak + λkdk)− f(ak) ≤ −ω1‖λkFk‖2 − ω2‖λkdk‖2 + ηkf(ak), (36)

where λk = αk + βkγk and {ηk} is a given positive sequence such that
∞∑
k=0

ηk < η <∞. (37)

Step 5: Compute Fk+1.
Step 6: Update γk+1 =

yTk yk
(αk + βkγk)yTk dk

.
Step 7: Set k = k + 1, and go to step 2.

5 Convergence Analysis

The global convergence of Algorithm 1 (HDDSL) is presented in this section.

Lemma 5.1. Suppose that Assumption 2 holds and {ak} be generated by Algorithm 1. Then dk is a descent
direction for f(ak) at ak i.e

Of(ak)T dk < 0. (38)

Proof. From (2), (23) and (34),

Of(ak)T dk = FTk F
′
kdk

= FTk [(F ′k − θ−1γkI)dk − Fk]

= FTk (F ′k − θ−1γkI)dk − ‖Fk‖2,
(39)
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and by Cauchy-Schwarz,

Of(ak)T dk ≤ ‖Fk‖‖(F ′k − θ−1γkI)dk‖ − ‖Fk‖2

≤ −(1− ε)‖Fk‖2.
(40)

Hence, for ε ∈ (0, 1) this lemma is true. By Lemma 5.1, we can deduce that the norm function
f(ak) is a descent along dk , which means that ‖Fk+1‖ ≤ ‖Fk‖ is true.
Lemma 5.2. Suppose that Assumption 2 hold and {ak} be generated by Algorithm 1. Then {ak} ⊂ S.

Proof. By lemma 5.1, ‖Fk+1‖ ≤ ‖Fk‖. Moreover, we have for all k.

‖Fk+1‖ ≤ ‖Fk‖ ≤ ‖Fk−1‖ ≤ . . . ≤ ‖F0‖.

This implies that {ak} ⊂ S.
Lemma 5.3. Suppose that Assumption 1 holds {ak} is generated by Algorithm 1. Then there exists a
constantm > 0 such that for all k.

yTk sk ≥ h‖sk‖2. (41)

Proof. By mean-value theorem and (19),

yTk sk = sTk (F (xk+1)− F (xk)) = sTk F
′(ζ)sk ≥ h‖sk‖2,

where ξ = xk + ζ(ak+1 − ak) , ζ ∈ (0, 1).

Using yTk sk ≥ h‖sk‖2 > 0, γk+1 is always generated by the update formula (31). Therefore,
γk+1I inherits the positive definiteness of γkI . From Lemma 5.3 and (21), the following inequality
holds,

yTk sk
‖sk‖2

≥ h, ‖yk‖2

yTk sk
≤ H2

h
. (42)

Lemma 5.4. Suppose that Assumption 1 holds and {ak} is generated by Algorithm 1. Then

lim
k→∞

‖λkdk‖ = 0, (43)

and
lim
k→∞

‖λkFk‖ = 0. (44)

Proof. By (36) and for all k > 0,

ω2‖λkdk‖2 ≤ ω1‖λkFk‖2 + ω2‖λkdk‖2

≤ ‖Fk‖2 − ‖Fk+1‖2 + ηk‖Fk‖2.
(45)
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By summing the above inequality,

ω2

k∑
i=0

‖λidi‖2 ≤
k∑
i=0

(
‖Fi‖2 − ‖Fi+1‖2

)
+

k∑
i=0

ηi‖Fi‖2

= ‖F0‖2 − ‖Fk+1‖2 +

k∑
i=0

ηi‖Fi‖2

≤ ‖F0‖2 + ‖F0‖2
k∑
i=0

ηi

≤ ‖F0‖2 + ‖F0‖2
∞∑
i=0

ηi.

(46)

Thus, from level set and fact that {ηk} satisfies (37), then the series
∞∑
i=0

‖λidi‖2 is convergent. This

implies (43). By similar arguments as above but with ω1‖λkF (xk)‖2 on the left hand side, (44)
holds.
Lemma 5.5. Suppose that assumption 1 holds and {ak} is generated by Algorithm 1. Then there exists
some positive constantsm2 such that for all k > 0,

‖dk‖ ≤ m2, (47)

Proof. From (21), (31), and (34)

‖dk‖ =

∥∥∥∥∥−θλk−1yTk−1dk−1yTk−1yk−1
Fk

∥∥∥∥∥
=

∥∥∥∥∥−θ yTk−1sk−1Fk‖yk−1‖2

∥∥∥∥∥
≤ θ‖Fk‖‖sk−1‖‖yk−1‖

h2‖sk−1‖2

≤ θ‖Fk‖H‖sk−1‖
h2‖sk−1‖

≤ θ‖Fk‖H
h2

≤ θ‖F0‖H
h2

.

(48)

Takingm2 = θ‖F0‖H
h2 , (47) is obtained.

Theorem 5.1. Suppose that Assumption 1 holds and {ak} is generated by Algorithm 1. Assume further
for all k > 0,

λk ≥ c
|FTk dk|
‖dk‖2

, (49)

where c > 0. Then,
lim
k→∞

‖Fk‖ = 0. (50)
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Proof. From Lemma 5.5, (47) is obtained. Therefore by (43) and the boundedness of {‖dk‖},

lim
k→∞

λk‖dk‖2 = 0, (51)

from (49) and (51), the following condition holds.

lim
k→∞

|FTk dk| = 0. (52)

On the other hand from (34),
FTk dk = −θγ−1k ‖Fk‖

2, (53)

‖Fk‖2 = | − FTk dkθ−1γk|
= θ−1|γk||FTk dk|.

(54)

But,
γ−1k =

λk−1y
T
k−1dk−1

‖yk−1‖2
=
yTk−1sk−1

‖yk−1‖2
≥ h‖sk−1‖2

‖yk−1‖2
≥ h‖sk−1‖2

H2‖sk−1‖2
=

h

H2
.

Then,
|γk| ≤

H2

h
. (55)

However, from (54) and (55),
‖Fk‖2 ≤ |FTk dk|

(
H2

θh

)
. (56)

Therefore,
0 ≤ ‖Fk‖2 ≤ |FTk dk|

(
H2

θh

)
−→ 0. (57)

Therefore
lim
k→∞

‖Fk‖ = 0. (58)

The proof is completed.

6 Numerical Results

In this section, some numerical results are provided to show the effectiveness of the proposed
method by comparing it with the following existing methods in the literature.

• An inexact double step lengthmethod for solving systems of nonlinear equations (IDSL)[8].
• An improved derivative-free method via double direction approach for solving systems of

nonlinear equation(IDFDD) [7].

For the HDDSL Algorithm, the following parameters are set. ω1 = ω2 = 10−4, r = 0.2 and
q = 0.3. ηk =

1

(k + 1)2
. The parameters of IDSL and IDFDD algorithms are taken from [8] and

[7] respectively.
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The computer codes used were written in Matlab 9.4.0 (R2018a) and run on a personal com-
puter equippedwith a 1.80GHzCPUprocessor and 8GBRAM.The algorithmswere implemented
with the same line search (36) in the experiments. The iteration is set to stop for the three meth-
ods if ‖Fk‖ ≤ 10−4, or when the iterations exceed 1000 but no point of ak satisfying the stopping
criterion is obtained. The symbol ’-’ represents failure due to; (i) Memory requirement (ii) the
Number of iterations exceeding 1000. To show the extensive numerical experiments of HDDSL,
IDSL, and IDFDD methods, we have tried these methods on the previous eight Benchmark test
problems with different initial points and dimensions (n values) between 100 to 10,000.

Table 2: Initial points.

INITIAL POINTS (IP) VALUES
a1 (

1
2 ,

1
2 , ...,

1
2

)T
a2 (

1
5 ,

1
5 , ...,

1
5

)T
a3 (

3
2 ,

3
2 , ...,

3
2

)T
a4 (

2
5 ,

2
5 , ...,

2
5

)T
a5 (

0, 12 ,
2
3 , ..., 1−

1
n

)T
a6

(
1
4 ,
−1
4 , ...,

(−1)n
4

)T
a7 (

1, 12 ,
1
3 , ...,

1
n

)T
1. Problem 1 [8]
F (a) = Ba+ c1,

where, B =



2 −1
0 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

, and c1 = (ea1 − 1, ..., exn − 1)T .

2. Problem 2 [1]
F (a) = Ba+ c2,

where, B =



2 −1
0 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

, and c2 = (sin a1 − 1, ..., sin an − 1)T .

3. Problem 3[6]
F1 = a1 − ecos(

a1+a2
n+1 ),

Fi = ai − e
cos

(
ai−1+ai+ai+1

n+1

)
,

Fn = an − e
cos

(
an−1+an

n+1

)
, i = 2, 3, ..., n− 1.

4. Problem 4 [8]
Fi(a) = (1− a2i ) + ai(1 + aian−2an−1an)− 2, i = 1, 2, ..., n.
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5. Problem 5
Fi(a) = ai − 3ai

(
sin ai

3 − 0.66
)

+ 2, i = 1, 2, ..., n.

6. Problem 6: The discretized Chandrasehar H-equation (problem of integral equation arising
in radiative heat transfer)

Fi(a) = xi −

1− c
2n

n∑
j=1

µiaj
µi + µj

−1, i=1,2,...,n, j=1,2,...,n.

with c ∈ [0, 1) and µ = i−0.5
n . (In our experiment we take c = 0.1).

7. Problem 7 [7]
Fi(a) = 2ai − sin |ai|, i = 1, 2, ..., n.

8. Problem 8
F1(a) = a1(a21 + a22)− 1,
Fi(a) = ai(a

2
i−1 + 2a2i + a2i+1)− 1

Fn(a) = an(a2n−1 + a2n). i = 2, 3, ..., n− 1.

Table 3: Numerical results of Problem 1.

HDDSL IDSL IDFDD
NI CT ‖Fk‖ NI CT ‖Fk‖ NI CT ‖Fk‖

100 a1 19 0.086046 7.56E-05 21 0.039053 6.79E-05 44 0.119926 8.47E-05
a2 17 0.09443 6.73E-05 20 0.054056 6.64E-05 38 0.107599 9.01E-05
a3 23 0.068536 9.07E-05 22 0.056029 8.48E-05 52 0.132793 8.69E-05
a4 19 0.073777 5.92E-05 23 0.077724 5.24E-05 43 0.124381 8.42E-05
a5 21 0.078571 5.3E-05 21 0.069383 8.87E-05 47 0.136727 8.71E-05
a6 18 0.053883 5.31E-05 21 0.067299 5.95E-05 39 0.10678 7.95E-05
a7 17 0.088059 5.21E-05 20 0.048554 9.03E-05 36 0.100868 9.24E-05

1,000 a1 20 0.427984 5.11E-05 24 0.448418 8.33E-05 46 1.132894 8.26E-05
a2 17 0.355284 6.2E-05 22 0.383085 9.86E-05 42 0.948192 8.66E-05
a3 20 0.400495 8.62E-05 24 0.403832 6.94E-05 48 1.062128 9.58E-05
a4 19 0.413405 9.63E-05 23 0.418959 8.24E-05 45 1.041173 7.73E-05
a5 21 0.414048 7.36E-05 24 0.426779 7.09E-05 47 1.045997 8.3E-05
a6 16 0.319878 8.07E-05 23 0.410682 5.48E-05 40 0.892642 9.23E-05
a7 17 0.336022 5.2E-05 20 0.350069 9.53E-05 36 0.911509 9.3E-05

2,000 a1 20 1.511404 8.28E-05 24 1.512597 7.89E-05 47 3.65381 9.41E-05
a2 18 1.326404 5.05E-05 23 1.429866 6.19E-05 44 3.521878 7.78E-05
a3 21 1.499297 4.61E-05 24 1.461959 9.55E-05 51 4.101937 8.91E-05
a4 19 1.397923 8.53E-05 24 1.432547 7.51E-05 46 3.726025 9.93E-05
a5 20 1.427108 9.31E-05 24 1.489955 8.92E-05 52 4.742935 8.2E-05
a6 16 1.119568 8.9E-05 23 1.430295 5.11E-05 42 3.436851 9.3E-05
a7 17 1.281192 5.2E-05 20 1.232176 9.56E-05 36 3.241174 9.3E-05
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Table 4: Numerical results of Problem 2.

HDDSL IDSL IDFDD
NI CT ‖Fk‖ NI CT ‖Fk‖ NI CT ‖Fk‖

100 a1 18 0.062572 5.69E-05 16 0.043041 8.58E-05 26 0.078548 9.75E-05
a2 21 0.059264 8.42E-05 14 0.042393 6.73E-05 34 0.098625 7.79E-05
a3 24 0.074858 5.56E-05 17 0.047558 6.89E-05 37 0.117063 9.59E-05
a4 19 0.056566 8.93E-05 14 0.041349 5.91E-05 31 0.094199 7.37E-05
a5 23 0.072131 6.63E-05 16 0.050072 6.89E-05 35 0.143327 8.81E-05
a6 24 0.065612 5.29E-05 16 0.050092 8.79E-05 36 0.095618 1E-04
a7 23 0.084185 8.93E-05 15 0.045582 8.53E-05 35 0.097265 8.71E-05

1,000 a1 18 0.390192 5.9E-05 16 0.289141 5.79E-05 28 0.641491 7.86E-05
a2 22 0.462563 9.25E-05 14 0.244885 9.32E-05 37 0.907733 9.47E-05
a3 25 0.578908 8.99E-05 18 0.303107 7.86E-05 41 0.962955 8.17E-05
a4 21 0.484974 6.63E-05 14 0.253508 6.48E-05 34 0.857877 8.92E-05
a5 24 0.534088 8.86E-05 17 0.304339 6.28E-05 39 0.947689 7.89E-05
a6 24 0.497849 7.18E-05 16 0.292897 6.32E-05 40 0.950097 8.78E-05
a7 23 0.500307 8.76E-05 15 0.25549 8.39E-05 39 0.915183 8.07E-05

2,000 a1 20 1.534464 5.69E-05 15 0.938192 8.33E-05 29 2.448305 7.26E-05
a2 22 1.62065 9.31E-05 15 0.912588 6.04E-05 38 3.268568 9.72E-05
a3 25 1.996947 6.07E-05 19 1.156874 5.41E-05 42 3.544581 8.37E-05
a4 21 1.659435 6.3E-05 14 0.883999 7.78E-05 35 3.010445 9.15E-05
a5 24 1.879494 7.51E-05 17 1.041232 8.36E-05 40 3.329917 8.11E-05
a6 26 2.000885 7.42E-05 16 0.971261 6.45E-05 41 3.415999 9.01E-05
a7 24 1.914637 6.15E-05 15 0.951498 9.28E-05 40 3.329539 8.32E-05

Table 5: Numerical results of Problem 3.

HDDSL IDSL IDFDD
NI CT ‖Fk‖ NI CT ‖Fk‖ NI CT ‖Fk‖

1,000 a1 5 0.005064 2.18E-05 20 0.029283 6.69E-05 88 0.039125 7.72E-05
a2 5 0.004858 2.48E-05 20 0.016974 7.59E-05 88 0.041215 8.77E-05
a3 5 0.005357 1.2E-05 19 0.016551 7.35E-05 85 0.041695 9.66E-05
a4 5 0.004579 2.28E-05 20 0.009005 6.99E-05 88 0.045116 8.07E-05
a5 5 0.005276 1.7E-05 20 0.008642 5.21E-05 87 0.037374 7.91E-05
a6 5 0.002724 2.92E-05 20 0.023986 8.95E-05 89 0.044046 7.85E-05
a7 5 0.005249 2.67E-05 20 0.011291 8.18E-05 88 0.04363 9.44E-05

10,000 a1 5 0.020228 6.93E-05 22 0.069044 5.29E-05 103 0.288239 8.13E-05
a2 5 0.018162 7.87E-05 22 0.062359 6E-05 103 0.267648 9.23E-05
a3 5 0.016448 3.81E-05 21 0.080194 5.81E-05 101 0.248799 7.73E-05
a4 5 0.017735 7.24E-05 22 0.092328 5.53E-05 103 0.294591 8.49E-05
a5 5 0.018758 5.37E-05 21 0.054243 8.2E-05 102 0.303128 8.29E-05
a6 5 0.020606 9.28E-05 22 0.082501 7.08E-05 104 0.283596 8.27E-05
a7 5 0.017448 8.49E-05 22 0.060351 6.48E-05 103 0.281549 9.96E-05

100,000 a1 6 0.143677 1.1E-05 23 0.651922 8.36E-05 107 2.957521 8.57E-05
a2 6 0.170244 1.24E-05 23 0.742498 9.49E-05 107 2.58559 9.73E-05
a3 6 0.131867 6.02E-06 22 0.647278 9.19E-05 105 2.523885 8.15E-05
a4 6 0.136426 1.15E-05 23 0.625249 8.74E-05 107 2.552052 8.96E-05
a5 6 0.162541 8.49E-06 23 0.652416 6.48E-05 106 2.538057 8.74E-05
a6 6 0.168431 1.47E-05 24 0.682688 5.59E-05 108 2.578981 8.72E-05
a7 6 0.172361 1.34E-05 24 0.666882 5.12E-05 108 2.611317 7.99E-05
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Table 6: Numerical results of Problem 4.

HDDSL IDSL IDFDD
NI CT ‖Fk‖ NI CT ‖Fk‖ NI CT ‖Fk‖

1,000 a1 11 0.00601 4.87E-05 18 0.009278 6.45E-05 23 0.012334 8.87E-05
a2 6 0.005123 2.81E-05 19 0.009113 8.3E-05 17 0.009321 6.99E-05
a3 12 0.008914 5.84E-05 16 0.006937 9.39E-05 27 0.009924 8.55E-05
a4 9 0.007446 6.69E-05 17 0.005503 6.44E-05 25 0.009966 7.36E-05
a5 12 0.004589 6.02E-05 18 0.005172 8.98E-05 62 0.022277 9.21E-05
a6 6 0.005202 2.77E-05 19 0.007668 5.68E-05 27 0.010335 9.17E-05
a7 16 0.00982 5.78E-05 25 0.010771 5.29E-05 39 0.015002 7.82E-05

10,000 a1 12 0.039852 3.7E-05 20 0.037669 5.1E-05 26 0.067009 7.35E-05
a2 6 0.019763 8.87E-05 21 0.042498 6.56E-05 19 0.055433 9.06E-05
a3 13 0.037047 4.43E-05 18 0.049099 7.42E-05 30 0.073083 7.09E-05
a4 10 0.032617 5.08E-05 19 0.036196 5.09E-05 27 0.058444 9.54E-05
a5 10 0.032417 3.99E-05 17 0.042394 8.93E-05 61 0.122019 9.99E-05
a6 6 0.017417 8.76E-05 20 0.043078 8.98E-05 30 0.065872 7.61E-05
a7 17 0.066437 2.4E-05 26 0.047149 8.78E-05 40 0.07688 6.35E-05

100,000 a1 13 0.298914 2.81E-05 21 0.351706 8.07E-05 28 0.581697 9.52E-05
a2 7 0.171232 6.74E-05 23 0.359819 5.19E-05 22 0.461627 7.51E-05
a3 14 0.286959 3.36E-05 20 0.347148 5.87E-05 32 0.652686 9.18E-05
a4 11 0.229944 3.85E-05 20 0.332691 8.05E-05 30 0.626244 7.91E-05
a5 8 0.151097 3.88E-05 17 0.308093 7.34E-05 63 1.24419 9.63E-05
a6 7 0.144951 6.65E-05 22 0.375993 7.1E-05 32 0.868389 9.85E-05
a7 17 0.296909 6.33E-05 27 0.44873 8.87E-05 42 0.81673 8.33E-05

Table 7: Numerical results of Problem 5.

HDDSL IDSL IDFDD
NI CT ‖Fk‖ NI CT ‖Fk‖ NI CT ‖Fk‖

1,000 a1 10 0.008395 9.52E-05 21 0.009242 5.77E-05 30 0.012078 7.69E-05
a2 10 0.007966 4.72E-05 21 0.007001 5.84E-05 29 0.012126 6.82E-05
a3 11 0.006258 9.48E-05 19 0.008618 9.67E-05 32 0.018467 7.74E-05
a4 10 0.006726 7.71E-05 21 0.008077 5.92E-05 30 0.017134 6.53E-05
a5 11 0.005082 5.2E-05 20 0.007062 8.01E-05 31 0.014759 8.63E-05
a6 9 0.006061 3.33E-05 20 0.010393 6.83E-05 25 0.012315 8.88E-05
x7 10 0.006331 2.75E-05 21 0.006859 5.18E-05 28 0.011884 6.56E-05

10,000 a1 11 0.050923 7.24E-05 22 0.048906 9.12E-05 32 0.082389 9.96E-05
a2 11 0.045862 3.59E-05 22 0.046715 9.23E-05 31 0.094621 8.84E-05
a3 12 0.052182 7.21E-05 21 0.04662 7.65E-05 35 0.094544 6.42E-05
a4 11 0.041051 5.86E-05 22 0.047237 9.36E-05 32 0.100286 8.45E-05
a5 12 0.059072 3.98E-05 22 0.048057 6.29E-05 34 0.096634 7.19E-05
a6 10 0.042105 2.53E-05 22 0.048966 5.4E-05 28 0.085704 7.37E-05
a7 10 0.037627 8.07E-05 22 0.053777 8.16E-05 30 0.08902 8.15E-05

100,000 a1 12 0.340436 5.5E-05 24 0.402003 7.21E-05 35 0.697165 8.26E-05
a2 12 0.296061 2.73E-05 24 0.41094 7.3E-05 34 0.811713 7.33E-05
a3 13 0.292467 5.48E-05 23 0.39072 6.05E-05 37 0.745469 8.32E-05
a4 12 0.315122 4.46E-05 24 0.413037 7.4E-05 35 0.695419 7.01E-05
a5 13 0.26992 3.03E-05 23 0.388943 9.94E-05 36 0.757766 9.32E-05
a6 10 0.222806 8E-05 23 0.381519 8.54E-05 30 0.624813 9.54E-05
a7 11 0.255413 6.08E-05 24 0.521528 6.45E-05 33 0.702426 6.72E-05
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Table 8: Numerical results of Problem 6.

HDDSL IDSL IDFDD
NI CT ‖Fk‖ NI CT ‖Fk‖ NI CT ‖Fk‖

1,000 a1 9 0.007258 5.17E-05 17 0.01007 5.46E-05 – 0.288954 0.223257
a2 9 0.004237 6.88E-05 15 0.009534 8.81E-05 – 0.327166 0.280343
a3 10 0.009703 6.05E-05 18 0.012275 8.25E-05 – 0.310184 0.223573
a4 9 0.007728 6.77E-05 16 0.011595 8.81E-05 – 0.346968 0.238486
a5 9 0.007035 6.05E-05 18 0.010225 5.79E-05 – 0.37145 0.266009
a6 9 0.007174 7.18E-05 16 0.007221 5.46E-05 – 0.278931 0.263308
a7 7 0.005738 5.72E-05 14 0.005254 7.83E-05 124 0.047107 8.6E-05

10,000 a1 5 0.020753 8.68E-05 19 0.055901 4.98E-05 – 2.582012 0.019957
a2 6 0.022018 7.78E-05 17 0.050239 9.03E-05 – 2.595433 0.02505
a3 7 0.026238 7.06E-05 20 0.059733 8.28E-05 – 2.751142 0.019988
a4 4 0.017327 7.38E-06 18 0.075335 9.03E-05 – 2.571422 0.021318
a5 7 0.026686 7.16E-05 20 0.063516 4.97E-05 – 2.506555 0.023931
a6 6 0.024686 6.89E-05 18 0.052401 4.98E-05 – 2.582045 0.02353
a7 6 0.025518 6.94E-05 14 0.042693 7.83E-05 93 0.278512 8.63E-05

100,000 a1 5 0.135281 3.81E-05 21 0.569527 7.18E-05 – 21.0978 0.001773
a2 5 0.135464 6.75E-06 20 0.458992 5.6E-05 – 21.29192 0.002229
a3 6 0.173664 4.13E-05 23 0.550873 5.2E-05 – 21.38213 0.001775
a4 5 0.148619 2.55E-05 21 0.499927 5.6E-05 – 21.21942 0.001894
a5 5 0.146304 9.31E-05 22 0.657306 7.18E-05 – 21.22142 0.002131
a6 5 0.148733 2.93E-06 20 0.439507 7.18E-05 – 21.11174 0.002093
a7 4 0.140636 1.5E-05 14 0.320194 7.83E-05 87 2.142283 8.64E-05

Table 9: Numerical results of Problem 7.

HDDSL IDSL IDFDD
NI CT ‖Fk‖ NI CT ‖Fk‖ NI CT ‖Fk‖

1,000 a1 4 0.003593 2.81E-05 18 0.008638 6.23E-05 44 0.013049 9.25E-05
a2 4 0.003503 3.63E-05 16 0.006238 9.71E-05 41 0.011743 8.25E-05
a3 7 0.004795 2.9E-05 19 0.007773 8.59E-05 49 0.020651 7.68E-05
a4 4 0.002018 4.72E-05 17 0.006284 9.87E-05 43 0.012813 9.65E-05
a5 7 0.002994 6.76E-06 19 0.007582 6.33E-05 47 0.017203 8.49E-05
a6 6 0.003444 2.15E-05 17 0.008682 9.44E-05 43 0.021896 9.54E-05
a7 5 0.003508 8.96E-05 14 0.004145 8.36E-05 35 0.012827 9.22E-05

10,000 a1 4 0.011784 8.89E-05 19 0.037319 9.85E-05 48 0.12004 9.76E-05
a2 5 0.014811 5.75E-06 18 0.035711 7.68E-05 45 0.167162 8.7E-05
a3 7 0.020568 9.17E-05 21 0.040635 6.79E-05 53 0.13007 8.1E-05
a4 5 0.013503 7.46E-06 19 0.035666 7.81E-05 48 0.131741 7.74E-05
a5 7 0.01663 2.18E-05 21 0.042724 5.03E-05 51 0.117967 9.02E-05
a6 6 0.016562 6.8E-05 19 0.049162 7.47E-05 48 0.112577 7.65E-05
a7 5 0.011228 8.96E-05 14 0.028872 8.37E-05 35 0.075278 9.23E-05

100,000 a1 5 0.111909 1.41E-05 21 0.278435 7.79E-05 53 0.876666 7.83E-05
a2 5 0.120333 1.82E-05 20 0.261158 6.07E-05 49 0.849232 9.18E-05
a3 8 0.133753 1.45E-05 23 0.278786 5.37E-05 57 1.10498 8.55E-05
a4 5 0.087237 2.36E-05 21 0.270465 6.17E-05 52 0.84769 8.17E-05
a5 7 0.166646 6.9E-05 22 0.268697 7.97E-05 55 0.946469 9.52E-05
a6 7 0.117077 1.07E-05 21 0.262944 5.9E-05 52 0.876528 8.07E-05
a7 5 0.088781 8.96E-05 14 0.172282 8.37E-05 35 0.562445 9.23E-05
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Table 10: Numerical results of Problem 8.

HDDSL IDSL IDFDD
NI CT ‖Fk‖ NI CT ‖Fk‖ NI CT ‖Fk‖

1,000 a1 25 0.011827 9.9E-05 34 0.013644 7.48E-05 37 0.014598 9E-05
a2 27 0.01083 6.68E-05 25 0.009974 7.11E-05 40 0.026014 9.76E-05
a3 27 0.011541 8.05E-05 39 0.016629 7.12E-05 43 0.026974 9.2E-05
a4 26 0.01425 9.68E-05 38 0.011414 7.34E-05 39 0.020335 9.14E-05
a5 29 0.011346 7.81E-05 25 0.012756 9.85E-05 43 0.018004 8.57E-05
a6 24 0.012609 9.85E-05 33 0.012674 9.77E-05 42 0.021794 8.07E-05
a7 16 0.008257 6.42E-05 21 0.008738 9.99E-05 35 0.01418 9.44E-05

10,000 a1 26 0.063604 9.43E-05 36 0.067588 8.52E-05 39 0.107004 8.51E-05
a2 27 0.071332 7.89E-05 28 0.057171 7.14E-05 42 0.109131 9.12E-05
a3 27 0.06353 6.19E-05 40 0.075413 7.91E-05 44 0.103635 8.98E-05
a4 27 0.089224 8.57E-05 32 0.059848 9.44E-05 41 0.101038 8.75E-05
a5 29 0.06437 8.23E-05 24 0.047676 6.32E-05 45 0.127968 9.05E-05
a6 25 0.084594 5.84E-05 33 0.0729 8.58E-05 44 0.113948 9.12E-05
a7 16 0.048434 5.62E-05 22 0.049437 8.96E-05 35 0.083353 9.85E-05

100,000 a1 26 0.716189 7.9E-05 38 0.840042 9.79E-05 41 1.076758 9.29E-05
a2 27 0.705306 7.4E-05 29 0.657375 9.07E-05 44 1.078258 8.59E-05
a3 26 0.625941 7.7E-05 41 0.919964 7.96E-05 46 1.117782 8.29E-05
a4 27 0.623825 6.65E-05 37 0.837999 5.5E-05 45 1.095316 6.94E-05
a5 29 0.680253 7.89E-05 25 0.574306 9.75E-05 49 1.168136 6.71E-05
a6 23 0.613712 8.12E-05 37 0.810282 9.19E-05 46 1.103121 7.91E-05
a7 16 0.375065 6.98E-05 24 0.545617 6.98E-05 37 0.905213 8.79E-05
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Figure 1: Performance profile for the number of iterations.
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Figure 2: Performance profile for the CPU time (in seconds).

7 Results and Discussion

Tables (3-10) above reported the numerical results of the three methods, where "NI" and "CT"
mean the number of iterations and the CPU time (in seconds), respectively. At the same time,
‖Fk‖ is the norm of the residual at the stopping point. From the Tables (3-10), one can quickly
note that all the three methods aim to solve a nonlinear system of equations (1). However, the
effectiveness of the HDDSL algorithm was evident because it solves problems that IDFDD fails to
solve (see Problems 6). Furthermore, the HDDSLmethod significantly outperforms the IDSL and
IDFDD methods for nearly all the test problems examined. Because it has fewer iterations and
CPU time, which are less than those of IDSL and IDFDD methods except for Problem 2, where
the number of iterations and CPU time of the proposedmethod are greater than those of the IDSL
method, this is due to the contribution of the correction parameter in each iteration of the HDDSL
algorithm.

Figures (1-2) were created using the Dolan andMoré [5] performance profiles to demonstrate
the performance of each of the three methods. For each problem ρ ∈ P and solver s ∈ S , the
performance profile is obtained in term of the performance measure tρ,s > 0. For any pair (ρ, s)
of problem ρ and solver s, the performance ratio is given as

rρ,s =
tρ,s

min{tρ,s|s ∈ S}
. (59)

The best solver for a particular problem reaches the lower bound rρ,s = 1. If a solver s fails to meet
the convergence test for problem ρ, then rρ,s is set to infinity. The performance profile of a solver
s is defined as

p(τ) =
1

nρ
size{ρ ∈ P|rρ,s ≤ τ}, (60)
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where np is the number of problems. Therefore, p(τ) is the probability for solver s ∈ S that a
performance ratio rρ,s is within a factor τ ∈ R of the best possible ratio. However, the function P
is the cumulative distribution function for the performance ratio. The fraction p(τ) of problems
for which each method is within τ of the smallest number of iterations, CPU time, and function
evaluations is plotted for this purpose.

Figures 1 and 2 show that the curves corresponding to the HDDSL method remain above the
other curves representing the IDSL and IDFDD methods. Therefore, it indicates that the pro-
posed method performs better than IDFDD and IDSL methods in fewer iterations and CPU time.
Consequently, it is the most efficient method. Finally, the proposed method successfully solves
large-scale nonlinear problems from the results in Tables (3-10).

It is essential to state the advantages of the HDDSL method had over the IDFDD, and IDSL
methods, including:

(i) The proposed method converges much faster to solutions of the problems, which is shown
by the final norm value attained for each problem,

(ii) Better performance for solving the test problemswith uniform andmixed valued initial start-
ing points.

8 Conclusion

A hybrid double direction and step length method for solving a system of nonlinear equations
is presented in this work. We achieved this by modifying the method in [8] as well as approx-
imating the Jacobian matrix via acceleration parameter. Furthermore, the Picard-Maan hybrid
iterative scheme is employed to obtain the correction parameter. We used a set of large-scale test
problems to make numerical comparisons. The proposed method is an entirely derivative-free it-
erative method, which is why it successfully solved large-scale problems. Moreover, Table (3-10)
and Figure (1-2) demonstrated that the proposed method is practically quite efficient because it
has the fewest number of iterations and CPU time compared to the IDSL and IDFDD methods.
In addition, the proposed method successfully solved Problem 6, a discretized Chandrasekhar
H-equation problem arising in heat transfer. The limitations of the HDDSL method lie in the fact
that if the correction parameter θ is assigned outside the interval (1, 2), then it takes much time to
converge and, in some instances, diverges. The idea proposed in this paper can be used to solve
monotone nonlinear equations in future research, with application in compressive sensing.
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